Coronary artery stenosis detection via proposal-shifted spatial-temporal transformer in X-ray angiography


Abstract—Accurate detection of coronary artery stenosis in X-ray angiography (XRA) images is crucial for the diagnosis and treatment of coronary artery disease. However, stenosis detection remains a challenging task due to complicated vascular structures, poor imaging quality, and fickle lesions. While devoted to accurate stenosis detection, most methods are inefficient in the exploitation of spatio-temporal information of XRA sequences, leading to a limited performance on the task. To overcome the problem, we propose a new stenosis detection framework based on a Transformer-based module to aggregate proposal-level spatio-temporal features. In the module, proposal-shifted spatio-temporal tokenization (PSSTT) scheme is devised to gather spatio-temporal region-of-interest (RoI) features for obtaining visual tokens within a local window. Then, the Transformer-based feature aggregation (TFA) network takes the tokens as the inputs to enhance the RoI features by learning the long-range spatio temporal context for final stenosis prediction. The effectiveness of our method was validated by conducting qualitative and quantitative experiments on 233 XRA sequences of coronary artery. Our method achieves a high F1 score of 90.88%, outperforming other 15 state-of-the-art detection methods. It demonstrates that our method can perform accurate stenosis detection from XRA images due to the strong ability to aggregate spatio-temporal features.