Automatic spatial calibration of freehand ultrasound probe with a multilayer N-wire phantom


Abstract—The classic N-wire phantom has been widely used in the calibration of freehand ultrasound probes. One of the main challenges of the phantom is accurately identifying N-fiducials in ultrasound images, especially with multiple N-wire structures. In this study, a method using a multilayer N-wire phantom for the automatic spatial calibration of ultrasound images is proposed. All dots in the ultrasound image are segmented, scored, and classified according to the unique geometric features of the multilayer N-wire phantom. A recognition method for identifying N-fiducials from the dots is proposed for calibrating the spatial transformation of the ultrasound probe. At depths of 9, 11, 13, and 15 cm, the reconstruction error of 50 points is 1.24 ± 0.16, 1.09 ± 0.06, 0.95 ± 0.08, 1.02 ± 0.05 mm, respectively. The reconstruction mockup test shows that the distance accuracy is 1.11 ± 0.82 mm at a depth of 15 cm.