Cooperative three-view imaging optical coherence tomography for intraoperative vascular evaluation
Abstract—Real-time intraoperative optical coherence tomography (OCT) imaging of blood vessels after anastomosis operation can provide important information the vessel, such as patency, flow speed, and thrombosis morphology. Due to the strong scattering and absorption effect of blood, normal OCT imaging suffers from the problem of incomplete cross-sectional view of the vessel under investigation when the diameter is large. In this work, we present a novel cooperative three-view imaging spectral domain optical coherence tomography system for intraoperative exposed vascular imaging. Two more side views (left view and right view) were realized through a customized sample arm optical design and corresponding mechanical design and fabrication, which could generate cross-sectional images from three circumferential view directions to achieve a larger synthetic field of view (FOV). For each view, the imaging depth was 6.7 mm (in air) and the lateral scanning range was designed to be 3 mm. Therefore, a shared synthetic rectangle FOV of 3 mm × 3 mm was achieved through cooperative three view scanning. This multi-view imaging method can meet the circumferential imaging demands of vessels with an outer diameter less than 3 mm. Both phantom tube and rat vessel imaging confirmed the increased system FOV performance. We believe the intraoperative application of this cooperative three-imaging optical coherence tomography for objective vascular anastomosis evaluation can benefit patient outcomes in the future.